
Journal of Engineering Mathematics33: 353–376, 1998.
© 1998Kluwer Academic Publishers. Printed in the Netherlands.

The manufacture of continuous smelting electrodes from
carbon-paste briquettes

A. D. FITT1 and P. D. HOWELL2
1Faculty of Mathematical Studies, University of Southampton, SO17 1BJ, U.K.
2Mathematical Institute, 24–29 St. Giles, Oxford OX1 3LB, U.K.

Received 25 July 1997; accepted in revised form 4 March 1998

Abstract. Continuously consumed electrodes are used in the manufacture of ferro alloys, aluminium, silicon
metal and calcium carbide. The raw material for the electrodes is a carbon paste which is normally added to the
electrode in large solid sections. The option of manufacturing such electrodes from small paste ‘briquettes’ is
examined with respect to an industrial experiment used to predict the quality of a briquette-formed electrode. It is
shown that successful predictive models may be formulated using a two-phase slow-flow approach. Consideration
is also given to the briquette manufacture of Persson and Bruff electrodes, two different commercially important
devices for the production of silicon.
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1. Introduction

Continuous electrodes are widely used in electric smelting furnaces. Although this technology
was developed originally in the early part of this century, changes in it have been pioneered by
the Norwegian company Elkem ASA who have become the acknowledged leaders in this field.
The purpose of such electrodes (of which there are a number of different types – see below
for further details) is to conduct currents of up to 150,000 Amps to the centre of a smelting
furnace or Hall-Héroult cell, thereby providing the energy required to produce aluminium,
silicon, calcium carbide or ferroalloys. A schematic diagram of the process is shown in Figure
1. (In most commercial furnaces three such electrodes are used.) During a typical process the
electrodes (together with any metal casing or other sort of housing that may be present) are
consumed at a rate of about 0·5 m/day and are normally charged by adding large (typically
1 m high cylinders of diameter up to 1 m) blocks of raw material to the top of the electrode.
Central to the issues that will be discussed below is the raw material that makes the electrodes,
which will hereafter be referred to as ‘paste’. This is a mixture of binder (tar and pitch) and
calcined anthracite. The anthracite particles are present in a wide size range and may have
dimensions of anything between a number of microns and a few millimeters. Solid at room
temperature, the paste starts to soften at around 50◦C and flows when the temperature reaches
80◦C. The effective viscosity of (standard Søderberg) paste reaches a minimum value at about
200–250◦C, after which it increases with temperature as the anthracite particles begin to react
and bind. At around 400◦C the paste viscosity increases rapidly and the electrode ‘bakes’,
becoming solid at 500◦C. At 1000◦C the bake is complete. During the baking the strength
of the electrode is increased greatly and its thermal conductivity is improved by a factor of
between two and four; the electrical conductivity is increased by orders of magnitude, so that
an insulator is transformed into a conductor.
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354 A. D. Fitt and P. D. Howell

Figure 1. Schematic diagram of a typical continuous
electrode smelting furnace.

Figure 2. Experimental device for measurement
of briquette density.

At present, the self-baking continuous electrode is used successfully throughout the world
(for further details see [1]). One important aspect of the procedure that has been identified
as an area where design improvements could be made, however, concerns the recharging of
the electrode. Presently large sections are used to replenish the electrode above the furnace.
Although the charging of a Søderberg electrode is a fairly easy process, for the Persson elec-
trode (see Section 4 for a general description of this electrode) it is not possible to apply
cylinders for replenishment. Only one alternative to section replacement has seriously been
considered; instead of using large sections of paste for electrode replenishment, ‘briquettes’
(small bricks of paste of typical dimensions 10× 6 × 4 cm) may simply be added to the
top of the electrode. As the briquettes gradually progress downwards towards the furnace,
the increase in temperature causes them to flow, the air in the gaps between the briquettes is
expelled, and a self-baking electrode is formed.

Full-scale electrodes charged with briquettes have been tested and are currently in oper-
ation; however, a great deal of further information is required concerning this new process.
Some initial investigative experiments have taken place with apparatus similar to that shown
in schematic in Figure 2. The piston in the device is loaded with a massM (M = 31 kg in
the Elkem experiments carried out so far) and the experiment takes place in a low-powered
oven where the temperature is held constant at about 100◦C. The piston and the sides of the
container are perforated so that air can easily escape but molten paste cannot. Over a period of
5–6 hours the position of the top of the piston is monitored, allowing the effective (i.e. paste
+ air) paste density to be measured.

The main purpose of the current study is to propose models for the experiment. Although
ultimately the aim is to understand the paste melting and baking processes that occur in full
sized electrodes, it is anticipated that information gained from the experiment will be impor-
tant in determining the details of briquette production. A good qualitative and quantitative
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understanding of the experiment via mathematical modelling is therefore required. The main
requirements of a theoretical approach to the problem are:

(a) that any resulting models should be predictive, but fairly simple in nature;
(b) that the important parameters in the problem should be clearly identified;
(c) that the time scales for the melting of the briquettes should be determined and;
(d) that models should possess the potential to be ‘scaled up’ for application to commercial

electrodes.

In any mathematical study of the the experiment, two factors are immediately evident. First,
the key property that must be measured and predicted is the final void fraction of the paste/air
mixture after the paste melts. When subsequent baking takes place, the electrical conductivity,
mechanical strength and hence the final quality of the electrode depend a great deal upon the
quantity of voids that have been ‘baked in’. Second, it is clear that the process involves two-
phase flow, the interaction between the phases being of importance. It will transpire that many
simplifications may be made to the general equations of motion; for this reason we take a
rather general initial approach to the two-phase flow problem in order that the status of each
simplifying step be clear.

2. Two-phase flow modelling

We begin by setting up a two-phase flow framework that will allow us to examine both the
experiment and full-sized electrodes. Although subsequent simplifications will be made, the
two-phase equations will be posed in some generality, so that the assumptions involved in the
modelling may be clearly understood. We label the air and paste phases 1 and 2, respectively.
The general picture is then of a network of pores which slowly fill with melting paste as the
temperature increases and close as the paste is compressed. The three-dimensional equations
of two-phase flow may then be written (see [2])

(α1ρ1)t +∇ · (α1ρ1u1) = 0, (1)

(α2ρ2)t +∇ · (α2ρ2u2) = 0, (2)

(α1ρ1u1)t +∇ · (α1ρ1u1u1) = ∇ · (α1(T 1+ T Re
1 ))+ α1ρ1g +M1, (3)

(α2ρ2u2)t +∇ · (α2ρ2u2u2) = ∇ · (α2(T 2+ T Re
2 ))+ α2ρ2g +M2, (4)

(α1ρ1e1)t +∇ · (α1ρ1u1e1) = α1T 1: ∇ u1− 〈χ1p1∇ · u′1〉 − ∇ · α1(q1+ qRe
1 )

+α1ρ1r1 + E1+ α1D1, (5)

(α2ρ2e2)t +∇ · (α2ρ2u2e2) = α2T 2: ∇ u2− 〈χ2p2∇ · u′2〉 − ∇ · α2(q2+ qRe
2 )

+α2ρ2r2 + E2+ α2D2. (6)

In these equations (in which it has been assumed that there is no interphase mass exchange)α

represents volume fraction(α1 + α2 = 1), ρ andu denote density and velocity, respectively,
and a prime indicates fluctuating quantities, whilstT andT Re denote respectively the stress
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and Reynolds’ stress. (Standard tensor notation has been used here so thatA:B = AjiBij .)
The gravity vector is given byg,M denotes interfacial momentum source,q andqRe are,
respectively, the energy and turbulent energy fluxes andχi(x) is the phase indicator function
which takes the value 1 ifx is in phasei and zero otherwise. The termsEk andDk are, respec-
tively, the interfacial heat source in phasek and the dissipation in phasek, whilst r denotes
energy-source terms. The pressure and internal energy are given byp ande, respectively.

It is important to note that the two-phase flow equations given above (which have become
the recognised starting point for models of many different two-phase flow regimes) are posed
entirely in terms ofensemble averagedvariables. Although space does not permit a full dis-
cussion of such averaging procedures (which may be carried out in many different ways; see,
for example [2]), we generally define the ensemble average〈f 〉 of a fieldf (x, t) by

〈f 〉 =
∫

M

f (x, t; ξ) dm(ξ),

wherem(ξ) is the probability of observing the resultξ andM is the set of all such results. Put
crudely, this approach consists of adding the results from a number of different experimental
observations and dividing by the number of observations. The details of the averaging need
not concern us, but it is worth remembering that the variables in the Equations (1–6) have
complicated definitions. For example,αk = 〈χk〉, ρk = 〈χkρ〉/〈αk〉 anduk = 〈χkρ u〉/〈χkρ〉.
It is therefore dangerous to interpret the averaged variables in a pointwise manner so that, for
example, if it transpires that a component ofu is less than zero, this does not necessarily mean
that all the air particles have a negative velocity.

It is now necessary to invoke closure assumptions to derive a closed model from (1–
6). In the momentum equations, we assume that the Reynolds’ stress terms are negligible,
(subsequent estimates will show that all the relevant Reynolds numbers are small) the gravity
vector is given byg = −g k (wherek is a unit vector in thez-direction) and that

T k = −pk I + τk, (τk = µk(∇ u+∇ uT )),

whereµk denotes the dynamic viscosity of phasek. The termsMk represent the interfacial
forces arising from stresses on the interface. It has become normal (see, for example [3]) to
write

Mk = pki∇αk +M ′k, (k = 1, 2),

wherepki is the interfacially averaged pressure of phasek and the termsM ′k contain all
forces that are related to drag, virtual mass and any other unsteady flow effects that might
be important. If we ignore all such effects except for the interphase dragDij exerted on phase
i due to phasej , we find that the momentum equations become

(αkρk uk)t +∇ · (αkρk uk uk)+ αk∇pk = ∇ · (αk τ k)− αkρkg k

+ (pki − pk)∇αk +Dkj

and it now only remains to deal with the energy equations. Much modelling and discussion is
required here if the job is to be done carefully and many alternatives are possible. We prefer
to adopt a simple approach, assuming that the interfacial heat sources and the dissipation are
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both zero (both these assumptions may have to be reviewed in some circumstances, since
the chemical reactions that bake the paste may provide extra heat sources and the viscous
dissipation may be nonnegligible under some circumstances). We assume (consistent with the
momentum equations) that fluctuation terms may be ignored, and neglect bulk, interfacial and
dissipative energy sources. Then, using the Fourier lawqk = −kk∇T , whereT is temperature
(as distinct from the tensor quantityT ) andkk is the thermal conductivity of phasek, and
ek = cpkTk, wherecp denotes the specific heat at constant pressure, we find that the tree-
dimensional ensemble-averaged two-phase flow equations may be written

(α1ρ1)t +∇ · (α1ρ1u1) = 0, (7)

(α2ρ2)t +∇ · (α2ρ2u2) = 0, (8)

(α1ρ1u1)t +∇ · (α1ρ1u1u1)+ α1∇p1

= ∇ · (α1µ1(∇ u1+ (∇ u1)
T ))− α1ρ1g k + (p1i − p1)∇α1+D12, (9)

(α2ρ2u2)t +∇ · (α2ρ2u2u2)+ α2∇p2

= ∇ · (α2µ2(∇ u2+ (∇ u2)
T ))− α2ρ2g k + (p2i − p2)∇α2+D21, (10)

(α1ρ1cp1T1)t +∇ · (α1ρ1u1cp1T1) = α1T 1: ∇ u1+∇ · (α1k1∇T1), (11)

(α2ρ2cp2T2)t +∇ · (α2ρ2u2cp2T1) = α2T 2: ∇ u2+∇ · (α2k2∇T2), (12)

The Equations (7–12) may be thought of as the basic two-phase flow model, and we may now
further simplify these using some dimensional analysis pertinent to the particular experiment
that is being analysed.

We scale pressures withµ2U2/L2 and time withL2/U2 whereU2 andL2 are a typical
speed and length scale in the paste flow. In the equation (10) for the paste momentum, the
ratio of inertial to viscous forces is thus given by

Re2 = ρ2U2L2

µ2
.

Reasonable values for these parameters seem to beρ2 ∼ 1570 kg/m3, U2 ∼ 1 cm/hour and
(basing the length scale on the typical dimensions of a briquette)L2 ∼ 5 cm, so that, even
when a paste viscosity value ofµ2 ∼ 104 kg/s/m (almost certainly a gross underestimate –
see later discussion on paste viscosity) is assumed, we find that

Re2 ∼ 2× 10−8.

Evidently, under normal circumstances the viscous and the pressure terms in the equation
must be retained, and, since the ratio of gravity to viscous forces is given by

gravity2

viscosity2
∼ ρ2gL2

2

µ2U2
∼ 107/µ2
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andµ2 in S.I. units ranges in order of magnitude from 104 to 108, the gravity term cannot
normally be neglected. As far as the interfacial pressure term (which assumes such importance
in many two-phase flows) is concerned, we note that it seems likely that the bulk and interfacial
pressures will be almost identical in both phases. This term is thus ignored. In the gas momen-
tum equation, we scalep1 with µ2U2/L2, length and time withL2 andL2/U2 respectively, and
u1 with a typical gas velocityU1 say. Using a typical gas viscosityµ1 = 2× 10−5 kg/m/sec,
we find that the (dimensionless) ratios of inertial to pressure force, pressure to viscous force
and gravity to pressure forces are given, respectively, by

inertia1

pressure1
∼ U1ρ1L2

µ2
∼ 0·05U1

µ2
,

pressure1
viscous1

∼ µ2U2

µ1U1
∼ 5µ2

36U1
,

gravity1

pressure1
∼ ρ1gL2

2

µ2U2
∼ 9× 103

µ2
.

Inertia is therefore negligible also in the gas momentum equation, gravity may be ignored and
the pressure forces are many orders of magnitude larger than the viscous forces, largely as a
result of the very small value of the viscosity ratioµ1/µ2. Surface tension is also ignored in
both equations as a simple order-of-magnitude argument suggests that it will play a nontrivial
role only when the pore radius is less then about 10µm. Finally, the interfacial pressure in the
gas equation is assumed to be equal to the bulk gas pressure.

The two temperature equations require some careful analysis: in the experiment the tem-
perature range is about1T = 80◦C and the thermal conductivity of paste varies between
about 2 and 3 W/m/K. We setTi = T0+1T T̄i (whereT0 is a typical reference temperature),
pi = µ2U2p̄i/L2,x = L2 x̄,ui = U2ūi andt = L2t̄ /U2 and find, on dropping the bars and
simplifying, that

(α1ρ1cp1T1)t +∇ · (α1ρ1cp1u1T1)

= − U2

1T L2
α1p1µ2∇ · u1+ U2

1T L2
α1µ1

(
∂u1i

∂xj

+ ∂u1j

∂xi

)
∂u1i

∂xj

+ 1

L2U2
∇ · (α1k1∇T1), (13)

(α2ρ2cp2T2)t +∇ · (α2ρ2cp2u2T2)

= − U2

1T L2
α2p2µ2∇ · u2+ U2

1T L2
α2µ2

(
∂u2i

∂xj

+ ∂u2j

∂xi

)
∂u2i

∂xj

+ 1

L2U2
∇ · (α2k2∇T2). (14)

Using the typical valuesρ1 ∼ 1 kg/m3, cp1 ∼ 103 J/kg/k,k1 ∼ 3× 10−2 W/m/K, along with
U2 ∼ 2·8×10−6 m/s andL2 ∼ 0·05 m as before, we find that the terms on the left-hand side of
(13) are about 103, whilst the first two terms on the right-hand side have orders of magnitude
7× 10−7µ2 and 7× 10−7µ1, respectively. Finally, the diffusion term is about 2× 105. The
diffusion term is therefore dominant for physically realistic values of the viscosity. In (14), the
conclusions are similar when typical values ofcp2 ∼ 900 J/kg/K,k2 ∼ 2·5 W/m/K are used,
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the only difference being that now the left-hand side is comparable to the diffusion term and
must be retained.

Finally, assuming that the densities in both phases are constant (the densities and thermal
properties all change by small amounts over the the temperature ranges that are to be consid-
ered; these effects could be included if required) and writing for simplicityα2 = α, α1 = 1−α

andD = D21 = −D12, we find that the two-phase flow equations reduce to

αt +∇ · (α u2) = 0, (15)

−αt +∇ · ((1− α)u1) = 0, (16)

α∇p2 = ∇ · (αµ2[∇u2+ (∇u2)
T ])− ρ2αg k +D, (17)

(1− α)∇p1 = −D, (18)

0= ∇ · ((1− α)k1∇T1), (19)

(αρ2cp2T2)t + ∇ · (αρ2cp2u2T2) = ∇ · (αk2∇T2). (20)

The Equations (15–20) will form the basis of models for both the Elkem experiment and
real electrodes. We note immediately that the system is not closed, since it involves more
unknowns than there are equations. To close the system we need a constitutive relation for the
interactive dragD, and a relation betweenp1 andp2. We make the simplifying assumption
p1 = p2. Although for inertia-dominated flows setting the phasic pressures equal to each other
may be dangerous and lead to ill-posed problems, (see, for example [4]), for flows where the
viscosity is dominant it is known that this is normally a reasonable assumption. (Controversy
rages about the correct closure condition for two-phase flows, but it has become common
practice to setp1 = p2 in the absence of any conclusive evidence to the contrary.) For the
dragD we observe the following scalings. If

u2 ∼ U2, x ∼ L2,

then

u1 ∼ U1 ∼ αU2

1− α
, p1,2 ∼ µ2U2

L2
,

and assuming Poiseuille/Stokes drag,

D ∼ αµ1u1

R2
,

whereR is a typical pore radius. Hence, after nondimensionalisation (18) reads

∇p1 ∼ µ1

µ2
· L

2
2

R2
· α2

(1− α)2
. (21)

Sinceµ1/µ2 < O(10−10), we can take

p1 = const. (22)
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at least until the pores shrink to the point thatR(1− α)/L2 ∼ 10−5. Hence in this regime,
(hereafter referred to as ‘Regime I’) we obtain a closed system forα,u2 andT2 in the form

αt +∇ · (α u2) = 0, (23)

∇ · (αµ2[∇u2+ (∇u2)
T ]) = ρ2αg k, (24)

(αρ2cp2T2)t + ∇ · (αρ2cp2u2T2) = ∇ · (αk2∇T2). (25)

(Once (23–25) have been solved,u1 andT1 may be calculated if required from (16) and (19).)
The above model may not hold for all stages of the process, since it allowsα to increase

indefinitely. In practice, whenα reaches some critical value,αc say, the pores close off to form
isolated packets or bubbles of air. Once this has occurred,α cannot change, since the air is
unable to escape, and the problem reduces to

α = αc, (26)

∇ · u2 = 0, (27)

∇p2 = αc∇ · (µ2[∇u2+ (∇u2)
T ])− ρ2αcg k, (28)

(ρ2cp2T2)t +∇ · (ρ2cp2u2T2) = ∇ · (k2∇T2). (29)

We denote this regime byRegime II.
The transition between regimes I and II is complicated and unlikely to be easy to analyse.

We therefore neglect the details of the transition and simply assert that Regime I applies
wheneverα < αc, and switch to Regime II as soon asα reachesαc.

Some of the physical assumptions inherent in (23)–(25) and (26)–(29) merit further brief
discussion. In particular, we note that, though the briquettes are in mutual contact and are
contained within an external vessel, the model reflects the fact that the liquid phase is quite
unable to support a pressure gradient. In contrast to the familiar case say of a single phase
fluid occupying a container and subject to a pressure gradient (hydrostatic, for example)
but at rest everywhere, the internal air gaps present do not permit a solution with a non-
trivial pressure gradient and zero velocity. Of course, when regime II is reached and the air
gaps close off to form isolated pores, the physical nature of the mixture is changed; now a
pressure gradient can be supported and a hydrostatic pressure solution with zero velocity is
possible. Finally, it is worth adding that many refinements could be made to the basic model:
for example, the current assumption that the air and paste pressures are equal everywhere on
the paste/air interface could be replaced by the more accurate condition that the normal stress
is continuous. Submodels would then have to be developed to characterise the dependence
of pressure upon interface geometry. Related more detailed submodelling could also be used
to allow the critical void fractionαc to be predicted rather than regarded as known; if more
experimental information concerning the pore geometry becomes available, then this will be
pursued.

3. Analysis of the experiment

In the Elkem experiment, a cylinder of radiusa (= 8·5 cm) is filled with paste briquettes, with
an initial paste fractionα0 (= 0·45), up to an initial heightL (=30 cm). A massM (=31 kg) is
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then loaded onto the top of the piston and the cylinder is heated toTf = 100◦C. As air is forced
out by the weight of the loaded piston and of the paste itself, the mass moves downwards. Its
position is plotted against time, and from this the average density of the air/paste mixture
is deduced. It is observed that the density calculated by this method asymptotes to around
1430 kg/m3, whereas the density of raw paste at such temperatures is about 1570 kg/m3. The
final density is thus about 91% of that of pure paste; this corresponds toαc referred to earlier
and we shall thus takeαc = 0·91 in all numerical results given below. It might be argued that
‘predictions’ of the experimental data should not use this result as it comes itself from the
experiment: however, it is a parameter that is likely to be a property of the paste itself rather
than the experiment. We therfore regardαc as a ‘known paste property’.

3.1. THE FULL PROBLEM

Clearly the full problem, governed by (23)–(29) is a formidable one. Not only must coupled
partial differential equations be solved, but either one of two regimes may be present. Since
our main aim in this study is to acquire a qualitative understanding of the process, we consider
some obvious simplifications, rather than embark on a full numerical study of the problem.

3.2. ONE-DIMENSIONAL ISOTHERMAL MODEL

The simplest approach is to model the flow in the experiment as one-dimensional, with the
fluid velocity u2 = w(z, t)k. We first consider the isothermal case in which the paste has
constant viscosityµ2 and so the temperature variations in the experiment are irrelevant for the
purposes of effective mixture density calculation. We nondimensionalise using

z = Lz̃, s = Ls̃, w = MgL

2πa2µ2
w̃, t = 2πa2µ2

Mg
t̃, (30)

where the moving top of the experiment (i.e. the bottom surface of the piston) is denoted by
z = s(t). The Equations (23–24) become (dropping tildes)

αt + (αw)z = 0, (αwz)z = g∗α. (31)

Here

g∗ = πa2ρ2L

M
(32)

measures the relative importance of the weight of the briquettes themselves compared to that
of M.

The origin forz is chosen to be the bottom of the cylinder. The initial condition for (31)
is that the void fraction is specified att = 0 when moving top of the experiment is ats = 1.
We must also havew = 0 onz = 0. To determine the unknown boundarys(t) evidently we
must havew = ṡ whenz = s. In addition to this, the load is known. Since the effect of the
load is communicated to the briquette column by the briquettes themselves, the (dimensional)
pressure on the moving top is

− Mg

απa2
.
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This must equal 2µ2wz, and the final (non-dimensional) boundary conditions thus become

α = α0, t = 0,

w = 0, z = 0,

αwz = −1, w = ṡ, z = s,

s = 1, t = 0.

(33)

The unsteady, nonlinear free-boundary problem (31), (33) may be solved explicitly, (see
Appendix), giving

α = [α0(1+ g∗t)+ t]e−g∗zt ,

w = α0(eg∗zt − 1)

g∗t2[α0(1+ g∗t)+ t] −
z

t
, s = 1

g∗t
log

(
α0(1+ g∗t)+ t

α0+ t

)
. (34)

As noted in Section 2, this solution must eventually become invalid. (For example, whenz = 0
the void fractionα increases indefinitely.) hence there is a shift to regime II whenα reaches
αc, which occurs first atz = 0, t = tc, where

tc = αc − α0

1+ α0g∗
.

For t > tc we introduce a second free boundaryz = l(t) such that we have Regime I in
z > l and Regime II inz < l. The new free-boundary problem that results is (31) inl < z 6 s,
with the additional boundary conditions

α = αc, z = l,

w = 0, z = l,

αwz = −1, w = ṡ, z = s,

l = 0, t = tc.

(35)

This problem can also be solved in closed form, giving

α = αc exp

(
α0− αc + (1+ α0g

∗)t − αcg
∗zt

αc

)
,

w = 1+ α0g
∗

αcg
∗t
− 1

g∗t2
− z

t
+ α0

αcg
∗t2

exp

(
αc − α0− (1+ α0g

∗)t − αcg
∗zt

αc

)
,

s = 1+ α0g
∗

αcg
∗ − αc − α0

αcg
∗t
+ 1

g∗t
log

(
αc

α0+ t

)
,

l = (1+ α0g
∗)(t − tc)

αcg∗t
.

(36)

Notice that after timetf = αc − α0, we haves = l. At this pointα = αc everywhere and the
process stops.
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Figure 3. Paste volume fractionα versus heightz for
increasing values of timet . Hereg∗ = 2, α0 = 0·45,
αc = 0·91.

Figure 4. Free boundariesz = s(t) andz = l(t)

versus timet . Hereg∗ = 2, α0 = 0·45, αc =
0·91.

Figure 5. Paste volume fractionα versus heightz for
increasing values of timet . Hereg∗ = 0·34, α0 =
0·45,αc = 0·91.

Figure 6. Free boundariesz = s(t) andz = l(t)

versus timet . Hereg∗ = 0.34, α0 = 0·45, αc =
0·91.

In Figure 3 we have plotted the void fractionα againstz for increasing values oft , using the
parametersg∗ = 2, α0 = 0·45 andαc = 0·91. With these valuestc = 0·242, and indeed for
t > 0·242, we observe a region nearz = 0 in whichα = αc. The process stops withα ≡ αc

everywhere after timeαc−α0 = 0·46. The two free boundariess(t) andl(t) are plotted against
t in Figure 4 for the same parameter regime.

Although the behaviour forg∗ = 2 illustrates the general features of the free-boundary
movement well, for the experimentg∗ is actually about 0·34. Physically this means that the
massM is about three times heavier than the paste itself. We plotα againstz in Figure 5 and
s and l againstt in Figure 6 for this parameter regime. With this fairly small value ofg∗, α
remains nearly spatially uniform ast increases. A consequence of this is thattc = 0·399 and
the final timeαc − α0 = 0·46 are nearly equal, and so the free boundaryl rises very rapidly
to meets. This suggests that, under experimental conditions where heavily loaded pistons are
used, we obtain a reasonable approximation by settingg∗ = 0. This simplifies the problem
considerably, sincel(t) may then be neglected completely.

3.2.1. Temperature-dependent viscosity
The analysis carried out thus far might be expected to apply to the final stages of the experi-
ment, when the temperature, and hence the viscosity, of the paste has become uniform. Alter-
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natively, it may be regarded as relevant to an experiment where the briquettes are ‘preheated’
to the oven temperature before they are squashed by the piston. If the Elkem experiment is to
be properly simulated, however, then account must be taken of initial stages, where changes
in viscosity of the slowly heated paste are important. In general, we expect that both the
temperature and the paste fraction will be functionsr andz, but this complicates matters to
the extent that a purely numerical solution is required. Great simplifications occur, however, if
we assume that the cylinder is heated uniformly and insulated at its top and bottom, and infer
from this that the temperature is independent ofz. (Since the motion of the paste depends
upon the temperature through the viscosity, it cannot be the case that the temperature depends
only onr, whilst the paste fraction depends only uponz. We nevertheless proceed under these
assumptions, ignoring that fact that it will not be possible to impose the full no-slip condition
on the boundary of the experimental cylinder.) Averaging across the cross-section to obtain a
one-dimensional model as before, we obtain

αt + (αw)z = 0, µ̄2(αwz)z = g∗α, (37)

where µ̄2 is a function only oft . A typical value of the paste viscosity,M2, say, is used
to nondimensionalisēµ2, and in the nondimensionalisationansatz(30) for w and t . The
boundary conditions are

α = α0, t = 0,

w = 0, z = 0,

µ̄2(t)αwz = −1, w = ṡ, z = s,

s = 1, t = 0.

(38)

Using the methods described in the Appendix, we first solve (37) with boundary conditions
(38) to yield

α = (α0+ (1+ α0g
∗)F ) exp(−g∗Fz),

w = α0Ḟ (exp(g∗Fz)− 1)

g∗F 2(α0+ (1+ g∗α0)F )
− Ḟ z

F
, s = 1

g∗F
log

(
α0+ (1+ g∗α0)F

α0+ F

)
, (39)

where now

F(t) =
∫ t

0

dt ′

µ̄2(t ′)

andg∗ is as defined previously in (32). This solution is valid only untilα reachesαc, which
happens first atz = 0, t = tc where

F(tc) = αc − α0

1+ α0g∗
.

For t > tc we need to introduce another free boundary and solve (37) in the regionl(t) < z <

s(t) with the boundary conditions

α = αc, z = l(t),
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w = 0, z = l(t),

µ̄2(t)αwz = −1, w = ṡ, z = s,

l = 0, t = tc.

The solution is given by

α = αc exp

(
(1+ g∗α0)F + α0− αc

αc

− g∗Fz

)
,

w = Ḟ

g∗F 2

(
log

(
α

αc

)
+ α0

(
1

α
− 1

αc

))
,

s = 1

g∗αc

(
1+ g∗α0− αc − α0

F
+ αc

F
log

(
αc

α0+ F

))
,

l = 1

g∗αc

(
1+ g∗α0− αc − α0

F

)
. (40)

The whole process stops withα = αc andw = 0 everywhere whent = tf where

F(tf ) = αc − α0.

As noted above, there may be future interest in conducting experiments with a heavier
piston. Under circumstances when the right-hand side of the second equation of (37) may be
neglected, (37) with boundary conditions (38) has the particularly simple solution

α = α0+ F(t), w = − Ḟ z

α0+ F
, s = α0

α0+ F(t)
.

Now that gravity has been neglected in the momentum equation,α remains spatially uniform.
Thus whenα reachesαc, it does so over the whole cylinder simultaneously. This simplifies
matters greatly as a second free boundary does not have to be introduced.

To make realistic comparisons with experimental data, all that remains to be determined is
µ̄2(t). To do this we must consider the heat flow into the cylinder.

3.3. HEAT FLOW

To determine the paste viscosity as the experiment progresses, we must solve (25). Normally
this will give rise to a convection-diffusion equation that must be solved numerically. How-
ever, under the assumptions discussed above (namely that the cylinder is heated uniformly
and insulated at its top and bottom, so that the temperature is independent ofz, whilst the flow
is one-dimensional) the problem may be solved in closed form. We have (assuming that the
density, thermal conductivity and specific heat are constant)

(αT2)t +∇ · (αw kT2) = k2

ρ2cp2
∇ · (α∇T2) (41)
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and thus

T2t = k2

ρ2cp2

1

r
(rT2r )r

with boundary conditions

T2 = T0 at t = 0, T2r = h(T2− Tf ) on r = a, (42)

whereh is a heat-transfer coefficient (dimensions /m) which will depend on the type of
convection (for example, whether fans are used or natural convection dominates) present in
the oven. In the experiment, the diameter of the cylinder is 17 cm and thusa = 8·5 cm.
Taking T0 to be room temperature (say 20◦C) andTf as the oven temperature 100◦C, we
nondimensionalise as follows

r = ar̃, t = ρ2cp2a
2

k2
t̃ , T2 = Tf + (T0− Tf )T̃ , (43)

so that the problem becomes, on dropping the tildes,

Tt = Trr + Tr

r
, T = 1 att = 0, Tr = HT on r = 1, (44)

whereH = ah < 0. The thermal conductivity and specific heat of raw paste are given in [1]
ask2 = 2·5 W/m/K andcp2 = 900 J/kg/K, respectively. If a raw paste density of 1570 kg/m3

is used, the time scale implied by (43) is thus about 1·1 hours. We note first that this seems
well in line with the experimental results and, second, that it is not possible to simplify the
equations further by making the heat-flow problem quasi-steady.

The solution of (44) is

T =
∞∑

k=0

−2HJ0(rpk) e−p2
k t

(H 2+ p2
k)J0(pk)

, (45)

wherepk(k = 0, 1, 2 . . .) are the zeroes of

pJ1(p)+HJ0(p) = 0.

WhenH is small (the values of most practical interest), the first root is given by

p0 ∼
√−2H −

√
2

8
(−H)3/2+ 5

√
2

384
(−H)5/2+O((−H)7/2), (H → 0).

For largek, the roots are distributed according to

pk ∼ π(k + 1/4)− (3+ 8H)

8πk
+ (3+ 8H)

32πk2
+O(k−3),

an approximation that gives remarkably good results, even for modest values ofk. (Two-
decimal-place accuracy is obtained, even whenk = 1 for say H= −1.) The temperature may
now be averaged across a cross-section, giving

〈T 〉 = 2
∫ 1

0
T r dr =

∞∑
k=0

4H 2 e−p2
k t

p2
k(H

2+ p2
k )

(46)
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so that in dimensional variables

〈T 〉 = Tf + (T0− Tf )

∞∑
k=0

4a2h2

p2
k (a

2h2+ p2
k )

exp
(
− p2

kk2t

ρ2cp2a2

)
. (47)

Now that the temperature has been determined, we must give some thought to the viscosity
that will be used to predict the experimental results. Paste viscosity was measured for a range
of thermal conditions by Tørklep [5]. Using his results and after discussion with Elkem, we
feel that a good approximation for paste viscosity at temperatures between 50 and 150◦C is
given by an Arrhenius-type law. An extra complication arises as to the exact nature of the
constants appearing in the Arrhenius law, for the viscosity of the paste used in the Elkem
experiment is at present proprietary information. All that may be assumed is that the paste has
a viscosity of 104 Pa s at 150◦C and is ‘similar to anode paste, but less temperature dependent’.
In normal circumstances the viscosity of paste depends quite strongly on the amount of coke
contained in the paste, but, using the given (incomplete) data in conjunction with Tørklep’s
results, we propose a paste viscosity law given by

µ2 = 0·80081× 10−6 exp

(
9834

T

)
, (48)

whereµ2 is given in Pa s and the temperature in Kelvin. This formula assumes that the
viscosity at 75◦C is 1·5×106 Pa s (a result that may be in error, but is at least roughly correct)
and thus predicts a viscosity of 225071·6 Pa s at the experimental steady state temperature of
100◦C, as well as a viscosity of 104 Pa s at 150◦C. Obviously this formula should be treated
as approximate and may require updating if fuller details of the paste viscosity are revealed.

3.4. COMPARISONS WITH EXPERIMENTAL RESULTS

In order to compare with the tests performed at Elkem, the height of the piston during the
experiment must be related to the effective density of the paste/air mixture. We define the
mixture densityρm by

ρm = αρ2+ (1− α)ρ1 (49)

and note that, since the amount of paste in the experimental apparatus is conserved (unlike the
air, which escapes during the experiment), we have, when the piston is at a heights,∫ s

0
ρ2α = C

whereC is constant. Consideration of the conditions at the start of the experiment now shows
thatC = Lρ2α0. Integrating (49) between 0 ands and assuming thatρm is constant in space,
we then have

ρm = ρ1+ Lα0

s
(ρ2− ρ1).

Since in the experiment being analysedρ1/ρ2 is less than 10−3, we simply use

ρm = Lα0ρ2

s
(50)
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Figure 7. Comparison between theory and experimental data (symbols); constant viscosity (dashed line),
temperature-dependent viscosity (solid line).

for comparison purposes.
Figure 7 shows comparisons between theoretical and experimental results. The symbols

denote the results from two experiments, the density having been inferred from the position
of the piston using (50). We have plotted the broken line, using the constant-viscosity one-
dimensional model, the viscosity at 100◦C (see above) having been used. As expected, the rise
is much too sharp in comparison with the experimental results. We have plotted the solid line,
using (47), (39) and (40); the heat-transfer coefficient used in (44) was taken toH = −0·05
(at the lower end of the range suggested by Kakac and Yener [6], and in line with other
quoted values) and the relevant values oftc andtf were 7624 and 8231 seconds, respectively,
showing that regime II persists for only a relatively short time in this case (a result consistent
with the conclusions of Figures 5 and 6). The inclusion of the slower rise in temperature gives
results that are in much better agreement with the experimental data and shows that, as might
be expected, variations in viscosity must be taken into account if accurate predictions are
required. Allowing for the variations in the experimental data and the uncertainties concerning
the viscosity discussed above, we conclude that the model is performing well. Agreement is
not perfect, however. There are a number of possible reasons for this, apart from the sensitivity
of (48) mentioned above. These include

• The thermal conductivity of paste has been used. In the early stages of the process
the experimental apparatus also contains some air, which has a much lower thermal
conductivity. Averages should really be used for the thermal conductivity (and possibly
other thermal variables as well).

• For simplicity it has been assumed that the temperature in the experiment is determined
by (37). As noted in Section 2, more consideration of the role of the pressure terms in the
energy equation may be required.

• It is not absolutely clear how the experiment is begun. If the oven is switched on at
the start of the process, then presumably some heating time is required before a uniform
temperature is reached.

• It may be unrealistic to assume that the ends of the experimental apparatus are thermally
insulated.
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Figure 8. Schematic details of Persson and Bruff electrode designs.

• There is an inherent assumption in the model that, although the temperature varies with
r and not withz, the void fraction of paste varies withz, but not withr. This is obviously
unrealistic.

4. Alternative electrodes for silicon production

Although the main aim of this study is to examine the paste melting experiment, it is also
valuable to consider briefly how the theory may be applied to a range of full-scale electrodes.
Although detailed calculations will inevitably be of a numerical nature, we seek to establish
the key parameters and time scales for a range of industrial electrodes.

Since the early part of this century, the Søderberg electrode has been the only continuous
self-baking electrode available for calcium carbide and ferroalloy production. Although many
technical advances have taken place to allow increases in size and efficiency, the basic design
has remained almost unchanged since the first Søderberg electrode was used in 1919. For
processes (manufacture of calcium carbide, ferroalloys, for instance) where the product may
contain some iron, there is still no alternative to the Søderberg electrode. The fins and casing
of the electrode typically introduce some 0·1–1·0% iron into the end product. If silicon were
to be the end product, then about 1% iron would be introduced, an unacceptably high level.
Until recently, therefore, the only possibility was to use a conventional pre-baked electrode
element. In recent years, however, a number of new types of electrode have been proposed
with silicon production in mind. Two new designs that have attracted particular interest have
become known, after their originators, as the ‘Persson’ and ‘Bruff’ electrodes.

In the Persson design, a central graphite carbon core is surrounded by paste in a stationary
casing. A set of supports holds the core section in place and allows it to slip. During process-
ing, the core is fused into the paste as it is carbonised. The great advantage of this design is
that, unlike the Søderberg system where the metal electrode casing is present during the whole
process and is consumed in the furnace together with the electrode, here the emerging carbon
has no case. This is crucial for the production of silicon where the presence and subsequent
consumption of the metal electrode casing might otherwise introduce too much iron into the
furnace.

The Bruff electrode uses a specialised heating zone to melt and bake the paste. Heat is
provided by propane burners and some of hydrocarbons that escape from the baking paste
are also used to power the process. Once again, the main purpose of this arrangement is to
produce a caseless electrode.
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Space does not permit a full description of the details and advantages of these new types of
electrode, but more information may be found in [7] and [8] where many additional advantages
are claimed for the new designs. Figure 8 gives schematic details of both electrodes.

For both electrodes, the questions that must be answered are similar to those relevant to
the experiment. For example, is it possible to identify circumstances under which too much
air will be ‘baked in’ to the final product? Also, what are the requirements in terms of time or
electrode length for the proper outflow of briquettes?

5. The Persson electrode

5.1. THE FULL PROBLEM

Using the theory developed above, we may propose equations for the full problem in a Pers-
son electrode. Three separate regions have to be included, for as well as the graphite core a
‘baking’ and a ‘baked’ region must be introduced for different paste conditions. As well as
the temperature, the paste velocity, void fraction and electric potential must be determined.
For the sort of Persson electrode currently in use, we obtain an unsteady two-dimensional
cylindrically symmetric problem. (For full details see [9].) Though complicated, the resulting
equations are not nearly so formidable to solve numerically as the full two-phase flow/heating
problem that would have resulted if the simplifications detailed above had not taken place.
If the development of a sophisticated predictive tool was required for the analysis of Persson
electrode paste melting and baking, then it seems likely that a model similar to this could
be used. For the present, however, we do not consider this full model further, but content
ourselves with analysing some simplified cases.

5.2. TIME SCALES FOR AIR EXPULSION IN THE ELECTRODE

From the models already developed it is clear how the time scale for paste melting and baking
in the Persson electrode may be determined. The timetc for pore closure is given essentially
by a balance between gravity and viscosity, so that

tC ∼
√

µ2

ρ2gU
.

This corresponds to a distance down the electrode of

LC ∼
√

µ2U

ρ2g
.

If U = 0·5 m/day ≈6× 10−6 m/s,ρ2 ≈ 103 kg/m3 andµ2 ≈ 10n Pa s (the exponentn
varying say between 3 and 8 to allow for temperature dependence) then

LC ∼ 10n/2−5m.

Hence so long asµ2 < 1010 Pa s, (almost certainly the case in practice) all the air that is going
to escape will do so within about 1 metre. This indicates that regime II applies everywhere
except in a small region near to the top of the electrode. This result is in stark contrast to the
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experiment where regime I is normally the dominant one. One way of interpreting this result
is to conclude that the experiment could be made more practically relevant by increasing the
value ofg∗. Indeed, it is possible that ‘scaling up’ results of this short may turn out to be the
most important modelling conclusions from a practical point of view.

5.3. ONE-DIMENSIONAL MODEL

We use a one-dimensional approximation for the fluid mechanics in the electrode equivalent to
that used to model the experiment in Section 3.2. We nondimensionalise the vertical velocity
componentw with the electrode velocityU = 0·5 meters per day≈ 6× 10−6 m sec−1, and
the vertical distancez with the characteristic length scale

L =
√

2M2U

ρ2g
, (51)

whereM2 is a typical value of the temperature-dependent paste viscosityµ2.
We seek a steady state so that the equations of motion reduce to

αw = −Q, (µ̄2αwz)z = α, (52)

whereQ, the flux of paste, is a constant, as yet unknown. At the topz = 0 of the electrode the
stress is assumed to be zero and the void fractionα is prescribed, so that

α(0) = α0, wz(0) = 0. (53)

At some pointz = −b say, the paste becomes baked solid and is therefore constrained to
move with the imposed electrode speedU . Thus

w(−b) = −1. (54)

The boundary conditions (53–54) enable us in principle to solve the second-order ordinary
differential equation (52b) and then to find the constantQ. To do so, however, we need to know
the functional form ofµ̄2(z), which in general entails solving the coupled electrical and heat-
transfer problems. Some insight into the behaviour to be expected is gained by considering the
following simplified case. Suppose that the briquettes remain solid at the top of the electrode
until they reach a pointz = −m where they melt. Thereafter they have a constant viscosity
until they reach the baking pointz = −b, at which point they become solid once more. The
problem then reduces to

α = −Q/w, w(wz/w)z = 1, −b < z < −m,

wz = −m, α = α0, z = −m, (55)

w = −1, z = −b,

the length of the melting zone being given byl = b − m. The form of the solution of (55)
depends on the relative sizes ofl and the lengthm of the unmelted zone. Form > l +√2,

w = −
sinh2

(
D + (z+b) sinhD√

2

)
sinh2 D

, (56)
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where the constantD is the unique strictly positive solution of

sinh(2D +√2l sinh D) = √2m sinh D. (57)

For 06 m < l +√2, the solution is

w = −
cos2

(
D − (z+b) cosD√

2

)
cos2 D

, (58)

whereD satisfies

sin(2D −√2l cosD) = √2m cosD. (59)

For the solution to be bounded,D must lie in the rangeD∗ 6 D < π/2, whereD∗ is the
unique root in[0, π/2] of

√
2D∗ secD∗ = l, (60)

andD = D∗ corresponds tom = 0. WithD constrained to lie in[D∗, π/2), (59) has a unique
solution. Finally, in the special casem = l +√2, the solution is simply

w = −
(

1+ (z+ b)√
2

)2

. (61)

The main item of interest as far as the practical electrode production process is concerned
is of course the ‘baked-in’ volume fractionαb which determines whether or not the briquette-
produced electrode is of sufficient strength and electrical conductivity. This is given by

αb

α0
= −w(−m). (62)

D may be eliminated from this expression to obtain a relationship betweenαb/α0 and the two
parametersl andm:

l =
cos−1

√
α0
αb

(
1− m2α0

2αb

)
− sin−1

√
m2α0
2αb√

α0
2αb

(
1− m2α0

2αb

) for m <

√
2αb

α0
, (63)

l =
cosh−1

√
m2α0
2αb
− sinh−1

√
α0
αb

(
m2α0
2αb
− 1

)
√

α0
2αb

(
m2α0
2αb
− 1

) for m >

√
2αb

α0
, (64)

l = √2

(√
αb

α0
− 1

)
for m =

√
2αb

α0
. (65)
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Figure 9. Baked-in paste volume fractionαb versus
length of the melted zonel, for various values of the
length of the unmelted zonem. Hereα0 = 0·5, αc =
0·9.

Figure 10. Critical lengthlc of the melted zone,
above which the maximum possible paste volume
fraction is achieved, versus lengthm of the un-
melted zone. Hereα0 = 0·5, αc = 0·9. The
dotted line shows point of transition between the
two different solutions.

On physical grounds, we anticipate that the baked-in volume fractionαb should be an
increasing function of bothm (which is effectively the weight pushing down on the melted
zone) and the length of the melted zonel. However, the expressions (63)–(65) are only valid
for αb 6 αc, whereαc is the maximum possible value ofα defined earlier. Ifα reachesαc at
any point in the electrode (above the baking zone), then it remains at that value thereafter. We
denote bylc the critical value ofl such thatαb first equalsαc at l = lc. Then, if l is increased
pastlc, (63)–(65) cease to apply andαb simply remains at the valueαc.

We plotαb againstl in Figure 9, for various values ofm, using the parameter valuesα0 =
0·5 and αc = 0·9. In order to maximise the strength of the baked electrode, it is desirable to
makeαb as large as possible. In order to do so, one should ensure thatl > lc, so thatαb is at
its maximum value ofαc. We plotlc versusm in Figure 10, for the same values ofα0 andαc.
The dotted line shows the transition between solutions (63) and (64).

Because of the gross simplifying assumptions made regarding the viscosity, the results of
this simple model of the Persson electrode should be regarded as merely qualitative. Neverthe-
less, they provide some insight into the process of manufacturing briquette-charged electrodes.

6. Conclusions and discussion

The theory developed above has shown that the briquette-squashing experiment may be mod-
elled successfully using the two-phase slow flow equations. More data is required regarding
the effects of temperature variation, but the agreement between the predictions and the exper-
imental results is encouraging. Whilst our consideration of the future for briquette-charged
Persson and Bruff electrodes is incomplete, it has been shown that it is possible to determine
most of the qualitative details of the processes. Although numerical work is required for real
electrodes, there seems to be no reason why the development of practical predictive tools
should not be possible in the near future. In particular, it should be stressed that a careful
two-phase flow approach is necessary, since by formulating the models carefully from first
principles the approximations inherent in the equations can be clearly enunciated.
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In both the experimental and industrial cases analysis has shown that a number of different
regimes will probably be present. Different problems must be solved in each regime. The
regimes considered above actually represent a simplification of the real situation, since no
account has been taken so far of what happens in the final stages of the briquette recharging of
electrodes when the pores in the melting paste close and air can no longer escape. This is likely
to lead to complicated and involved modelling, but is probably unlikely to affect predictions
materially. In any case, the important time scales for both the experiment and the industrial
electrode may be obtained.

Whilst little attention has been given to the Bruff electrode, where the paste is melted
and baked by heating provided by propane burners and the combustion of escaping paste
hydrocarbons, it is clear that an inherent optimisation problem arises. If the heaters are not
hot enough then an electrode with low strength and electrical conductivity will be produced.
However, if the temperature of the heaters is too high, not only will energy be wasted, but there
is a danger of creating ‘baked in’ voids in the electrode. A model similar to that developed for
the Persson electrode may well prove to be an important manufacturing optimisation tool if
briquette charging is to be used for electrode replenishment.

Finally, we anticipate that the feasibility of briquette charging for other electrode designs
could be analysed, using techniques similar to those developed here.

Appendix: Solution of free-boundary problems

Consider the system of partial differential equations

αt + (αw)z = 0, (αwz)z = g∗α, (A1)

with boundary conditions

α = α0, s = 1, t = 0,

w = 0, z = 0, (A2)

αwz = −1, w = ṡ, z = s(t).

Here the initial volume fractionα0 is a given constant. Interestingly, ifg∗ is negative, the same
free-boundary problem governs the extension under gravity of a fibre (withα identified with
the cross-sectional area) or two-dimensioanl sheet (withα identified with the thickness) of
viscous liquid – see for example [10]. In such an application, the boundary condition (A2,c)
on z = s(t) corresponds to a compressive force applied to the free end (e.g. surface ten-
sion). The more general case in whichα is spatially nonuniform initially and (A2,c) becomes
[αwz]z=s(t) = f (t) is also readily tackled by the methods shown below.

We transform to Lagrangian variables defined via(x, t)→ (ξ, τ) where

z = Z(ξ, τ), t = τ,
∂Z(ξ, τ)

∂τ
= w(Z(ξ, τ), t), Z(ξ, 0) = ξ. (A3)

Once (A1,a) is transformed according to (A3), it may be integrated once to give

αZξ = α0. (A4)
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Using (A4), we may reduce (A1,b) to

αξτ = −g∗α0, (A5)

and hence

α = α0+ g∗α0τ(1− ξ)+ τ. (A6)

Finally, substituting (A6) in (A4) and integrating, we obtain

Z(ξ, τ) =
∫ ξ

0

α0 dξ ′

α0+ g∗α0τ(1− ξ)+ τ
. (A7)

In general, combining (A6) and (A7) gives a parametric description ofα as function ofz for
eacht . From this we can also deduce the lengths:

s(t) = Z(1, t). (A8)

Since in our caseα0 = const., (A7) is easily inverted to giveξ as a function ofz andt , and
thus explicit formulae forα(z, t) ands(t) are obtained.

The solution (A6) allowsα to grow without bound. We suppose that this continues until
α reaches some critical valueαc, after whichα remains at that value and the paste ceases to
flow. Since we have takenα0 = const., this must first occur atz = 0, t = tc, where

tc = αc − α0

1+ α0g
∗ .

(For arbitrary spatially-varyingα0, the situation is potentially much more complicated, since
it is possible for ‘pockets’ in whichα = αc to open up in the interior of the fluid domain.) For
t > tc, the boundary condition (A2,b) is replaced by

α = αc, w = 0, z = l(t),

with also the conditions (A2,c) onz = s(t).
The Equation (A6) forα remains valid so long as the paste continues to flow. The critical

valueα = αc occurs atξ = λ(τ), where

λ(τ) = (1+ g∗α0)τ − (αc − α0)

g∗α0τ
.

Now the general form forZ is

Z(ξ, τ) = Z0(τ)+
∫ ξ

0

α0 dξ ′

α0+ g∗α0τ(1− ξ)+ τ
.

The functionZ0 is determined from the initial-value problem

Z0τ (λ(τ), τ) = 0, Z0(tc) = 0. (A9)
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Then, as before, we have a parametric description ofα as a function ofz which is readily
inverted to giveα(z, t) explicitly.

For the case of temporally-varying viscosity, we simply note that the equations and bound-
ary conditions are reduced to those for constant viscosity after the transformation

t∗ = F(t) =
∫ t

0

dt ′

µ̄2(t ′)
, w∗ = µ̄2w. (A10)
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